SQL语法
基础
模式定义了数据如何存储、存储什么样的数据以及数据如何分解等信息,数据库和表都有模式。
主键的值不允许修改,也不允许复用(不能将已经删除的主键值赋给新数据行的主键)。
SQL(Structured Query Language),标准 SQL 由 ANSI 标准委员会管理,从而称为 ANSI SQL。各个 DBMS 都有自己的实现,如 PL/SQL、Transact-SQL 等。
SQL 语句不区分大小写,但是数据库表名、列名和值是否区分依赖于具体的 DBMS 以及配置。
SQL 支持以下三种注释:
1 | ## 注释 |
数据库创建与使用:
1 | CREATE DATABASE test; |
创建表
1 | CREATE TABLE mytable ( |
修改表
添加列
1 | ALTER TABLE mytable |
删除列
1 | ALTER TABLE mytable |
删除表
1 | DROP TABLE mytable; |
插入
普通插入
1 | INSERT INTO mytable(col1, col2) |
插入检索出来的数据
1 | INSERT INTO mytable1(col1, col2) |
将一个表的内容插入到一个新表
1 | CREATE TABLE newtable AS |
更新
1 | UPDATE mytable |
删除
1 | DELETE FROM mytable |
TRUNCATE TABLE 可以清空表,也就是删除所有行。
1 | TRUNCATE TABLE mytable; |
使用更新和删除操作时一定要用 WHERE 子句,不然会把整张表的数据都破坏。可以先用 SELECT 语句进行测试,防止错误删除。
查询
DISTINCT
相同值只会出现一次。它作用于所有列,也就是说所有列的值都相同才算相同。
1 | SELECT DISTINCT col1, col2 |
LIMIT
限制返回的行数。可以有两个参数,第一个参数为起始行,从 0 开始;第二个参数为返回的总行数。
返回前 5 行:
1 | SELECT * |
1 | SELECT * |
返回第 3 ~ 5 行:
1 | SELECT * |
排序
- ASC :升序(默认)
- DESC :降序
可以按多个列进行排序,并且为每个列指定不同的排序方式:
1 | SELECT * |
过滤
不进行过滤的数据非常大,导致通过网络传输了多余的数据,从而浪费了网络带宽。因此尽量使用 SQL 语句来过滤不必要的数据,而不是传输所有的数据到客户端中然后由客户端进行过滤。
1 | SELECT * |
下表显示了 WHERE 子句可用的操作符
操作符 | 说明 |
---|---|
= | 等于 |
< | 小于 |
> | 大于 |
<> != | 不等于 |
<= !> | 小于等于 |
>= !< | 大于等于 |
BETWEEN | 在两个值之间 |
IS NULL | 为 NULL 值 |
应该注意到,NULL 与 0、空字符串都不同。
AND 和 OR 用于连接多个过滤条件。优先处理 AND,当一个过滤表达式涉及到多个 AND 和 OR 时,可以使用 () 来决定优先级,使得优先级关系更清晰。
IN 操作符用于匹配一组值,其后也可以接一个 SELECT 子句,从而匹配子查询得到的一组值。
NOT 操作符用于否定一个条件。
通配符
通配符也是用在过滤语句中,但它只能用于文本字段。
- % 匹配 >=0 个任意字符;
- _ 匹配 ==1 个任意字符;
- [ ] 可以匹配集合内的字符,例如 [ab] 将匹配字符 a 或者 b。用脱字符 ^ 可以对其进行否定,也就是不匹配集合内的字符。
使用 Like 来进行通配符匹配。
1 | SELECT * |
不要滥用通配符,通配符位于开头处匹配会非常慢。
计算字段
在数据库服务器上完成数据的转换和格式化的工作往往比客户端上快得多,并且转换和格式化后的数据量更少的话可以减少网络通信量。
计算字段通常需要使用 AS 来取别名,否则输出的时候字段名为计算表达式。
1 | SELECT col1 * col2 AS alias |
CONCAT() 用于连接两个字段。许多数据库会使用空格把一个值填充为列宽,因此连接的结果会出现一些不必要的空格,使用 TRIM() 可以去除首尾空格。
1 | SELECT CONCAT(TRIM(col1), '(', TRIM(col2), ')') AS concat_col |
函数
各个 DBMS 的函数都是不相同的,因此不可移植,以下主要是 MySQL 的函数。
汇总
函 数 | 说 明 |
---|---|
AVG() | 返回某列的平均值 |
COUNT() | 返回某列的行数 |
MAX() | 返回某列的最大值 |
MIN() | 返回某列的最小值 |
SUM() | 返回某列值之和 |
AVG() 会忽略 NULL 行。
使用 DISTINCT 可以汇总不同的值。
1 | SELECT AVG(DISTINCT col1) AS avg_col |
分组
把具有相同的数据值的行放在同一组中。
可以对同一分组数据使用汇总函数进行处理,例如求分组数据的平均值等。
指定的分组字段除了能按该字段进行分组,也会自动按该字段进行排序。
1 | SELECT col, COUNT(*) AS num |
GROUP BY 自动按分组字段进行排序,ORDER BY 也可以按汇总字段来进行排序。
1 | SELECT col, COUNT(*) AS num |
WHERE 过滤行,HAVING 过滤分组,行过滤应当先于分组过滤。
1 | SELECT col, COUNT(*) AS num |
分组规定:
- GROUP BY 子句出现在 WHERE 子句之后,ORDER BY 子句之前;
- 除了汇总字段外,SELECT 语句中的每一字段都必须在 GROUP BY 子句中给出;
- NULL 的行会单独分为一组;
- 大多数 SQL 实现不支持 GROUP BY 列具有可变长度的数据类型。
连接
连接用于连接多个表,使用 JOIN 关键字,并且条件语句使用 ON 而不是 WHERE。
连接可以替换子查询,并且比子查询的效率一般会更快。
可以用 AS 给列名、计算字段和表名取别名,给表名取别名是为了简化 SQL 语句以及连接相同表。
内连接
内连接又称等值连接,使用 INNER JOIN 关键字。
1 | SELECT A.value, B.value |
可以不明确使用 INNER JOIN,而使用普通查询并在 WHERE 中将两个表中要连接的列用等值方法连接起来。
1 | SELECT A.value, B.value |
自连接
自连接可以看成内连接的一种,只是连接的表是自身而已。
一张员工表,包含员工姓名和员工所属部门,要找出与 Jim 处在同一部门的所有员工姓名。
子查询版本
1 | SELECT name |
自连接版本
1 | SELECT e1.name |
自然连接
自然连接是把同名列通过等值测试连接起来的,同名列可以有多个。
内连接和自然连接的区别:内连接提供连接的列,而自然连接自动连接所有同名列。
1 | SELECT A.value, B.value |
外连接
外连接保留了没有关联的那些行。分为左外连接,右外连接以及全外连接,左外连接就是保留左表没有关联的行。
检索所有顾客的订单信息,包括还没有订单信息的顾客。
1 | SELECT Customers.cust_id, Customer.cust_name, Orders.order_id |
customers 表:
cust_id | cust_name |
---|---|
1 | a |
2 | b |
3 | c |
orders 表:
order_id | cust_id |
---|---|
1 | 1 |
2 | 1 |
3 | 3 |
4 | 3 |
结果:
cust_id | cust_name | order_id |
---|---|---|
1 | a | 1 |
1 | a | 2 |
3 | c | 3 |
3 | c | 4 |
2 | b | Null |
组合查询
使用 UNION 来组合两个查询,如果第一个查询返回 M 行,第二个查询返回 N 行,那么组合查询的结果一般为 M+N 行。
每个查询必须包含相同的列、表达式和聚集函数。
默认会去除相同行,如果需要保留相同行,使用 UNION ALL。
只能包含一个 ORDER BY 子句,并且必须位于语句的最后。
1 | SELECT col |
视图
视图是虚拟的表,本身不包含数据,也就不能对其进行索引操作。
对视图的操作和对普通表的操作一样。
视图具有如下好处:
- 简化复杂的 SQL 操作,比如复杂的连接;
- 只使用实际表的一部分数据;
- 通过只给用户访问视图的权限,保证数据的安全性;
- 更改数据格式和表示。
1 | CREATE VIEW myview AS |
事务管理
基本术语:
- 事务(transaction)指一组 SQL 语句;
- 回退(rollback)指撤销指定 SQL 语句的过程;
- 提交(commit)指将未存储的 SQL 语句结果写入数据库表;
- 保留点(savepoint)指事务处理中设置的临时占位符(placeholder),你可以对它发布回退(与回退整个事务处理不同)。
不能回退 SELECT 语句,回退 SELECT 语句也没意义;也不能回退 CREATE 和 DROP 语句。
MySQL 的事务提交默认是隐式提交,每执行一条语句就把这条语句当成一个事务然后进行提交。当出现 START TRANSACTION 语句时,会关闭隐式提交;当 COMMIT 或 ROLLBACK 语句执行后,事务会自动关闭,重新恢复隐式提交。
设置 autocommit 为 0 可以取消自动提交;autocommit 标记是针对每个连接而不是针对服务器的。
如果没有设置保留点,ROLLBACK 会回退到 START TRANSACTION 语句处;如果设置了保留点,并且在 ROLLBACK 中指定该保留点,则会回退到该保留点。
1 | START TRANSACTION |
权限管理
MySQL 的账户信息保存在 mysql 这个数据库中。
1 | USE mysql; |
创建账户
新创建的账户没有任何权限。
1 | CREATE USER myuser IDENTIFIED BY 'mypassword'; |
修改账户名
1 | RENAME USER myuser TO newuser; |
删除账户
1 | DROP USER myuser; |
查看权限
1 | SHOW GRANTS FOR myuser; |
授予权限
账户用 username@host 的形式定义,username@% 使用的是默认主机名。
1 | GRANT SELECT, INSERT ON mydatabase.* TO myuser; |
删除权限
GRANT 和 REVOKE 可在几个层次上控制访问权限:
- 整个服务器,使用 GRANT ALL 和 REVOKE ALL;
- 整个数据库,使用 ON database.*;
- 特定的表,使用 ON database.table;
- 特定的列;
- 特定的存储过程。
1 | REVOKE SELECT, INSERT ON mydatabase.* FROM myuser; |
更改密码
必须使用 Password() 函数进行加密。
1 | SET PASSWROD FOR myuser = Password('new_password'); |
MySQL
B+ Tree 原理
1. 数据结构
B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。
B+ Tree 是基于 B Tree 和叶子节点顺序访问指针进行实现,它具有 B Tree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。
在 B+ Tree 中,一个节点中的 key 从左到右非递减排列,如果某个指针的左右相邻 key 分别是 keyi 和 keyi+1,且不为 null,则该指针指向节点的所有 key 大于等于 keyi 且小于等于 keyi+1。
2. 操作
进行查找操作时,首先在根节点进行二分查找,找到一个 key 所在的指针,然后递归地在指针所指向的节点进行查找。直到查找到叶子节点,然后在叶子节点上进行二分查找,找出 key 所对应的 data。
插入删除操作会破坏平衡树的平衡性,因此在进行插入删除操作之后,需要对树进行分裂、合并、旋转等操作来维护平衡性。
3. 与红黑树的比较
红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,这是因为使用 B+ 树访问磁盘数据有更高的性能。
(一)B+ 树有更低的树高
平衡树的树高 O(h)=O(logdN),其中 d 为每个节点的出度。红黑树的出度为 2,而 B+ Tree 的出度一般都非常大,所以红黑树的树高 h 很明显比 B+ Tree 大非常多。
(二)磁盘访问原理
操作系统一般将内存和磁盘分割成固定大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。
如果数据不在同一个磁盘块上,那么通常需要移动制动手臂进行寻道,而制动手臂因为其物理结构导致了移动效率低下,从而增加磁盘数据读取时间。B+ 树相对于红黑树有更低的树高,进行寻道的次数与树高成正比,在同一个磁盘块上进行访问只需要很短的磁盘旋转时间,所以 B+ 树更适合磁盘数据的读取。
(三)磁盘预读特性
为了减少磁盘 I/O 操作,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道,并且只需要很短的磁盘旋转时间,速度会非常快。并且可以利用预读特性,相邻的节点也能够被预先载入。
MySQL 索引
索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。
1 | CREATE INDEX idx_product_name ON Products (product_name); |
Once the index is created, MySQL will automatically maintain it as you insert, update, or delete rows from the table.
When you perform a query like:
1 | SELECT * FROM Products WHERE product_name = 'ExampleProduct'; |
With the index in place, MySQL can quickly find the rows with the matching product name because it doesn’t need to scan the entire table. Instead, it uses the index to locate the relevant rows efficiently.
1. B+Tree 索引
是大多数 MySQL 存储引擎的默认索引类型。
因为不再需要进行全表扫描,只需要对树进行搜索即可,所以查找速度快很多。
因为 B+ Tree 的有序性,所以除了用于查找,还可以用于排序和分组。
可以指定多个列作为索引列,多个索引列共同组成键。
适用于全键值、键值范围和键前缀查找,其中键前缀查找只适用于最左前缀查找。如果不是按照索引列的顺序进行查找,则无法使用索引。
索引优化
1. 独立的列
在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引。
例如下面的查询不能使用 actor_id 列的索引:
1 | SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5; |
2. 多列索引
在需要使用多个列作为条件进行查询时,使用多列索引比使用多个单列索引性能更好。例如下面的语句中,最好把 actor_id 和 film_id 设置为多列索引。
1 | SELECT film_id, actor_ id FROM sakila.film_actor |
3. 索引列的顺序
让选择性最强的索引列放在前面。
索引的选择性是指:不重复的索引值和记录总数的比值。最大值为 1,此时每个记录都有唯一的索引与其对应。选择性越高,每个记录的区分度越高,查询效率也越高。
例如下面显示的结果中 customer_id 的选择性比 staff_id 更高,因此最好把 customer_id 列放在多列索引的前面。
1 | SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS staff_id_selectivity, |
1 | staff_id_selectivity: 0.0001 |
索引的优点
- 大大减少了服务器需要扫描的数据行数。
- 帮助服务器避免进行排序和分组,以及避免创建临时表(B+Tree 索引是有序的,可以用于 ORDER BY 和 GROUP BY 操作。临时表主要是在排序和分组过程中创建,不需要排序和分组,也就不需要创建临时表)。
- 将随机 I/O 变为顺序 I/O(B+Tree 索引是有序的,会将相邻的数据都存储在一起)。
索引的使用条件
- 对于非常小的表、大部分情况下简单的全表扫描比建立索引更高效;
- 对于中到大型的表,索引就非常有效;
- 但是对于特大型的表,建立和维护索引的代价将会随之增长。这种情况下,需要用到一种技术可以直接区分出需要查询的一组数据,而不是一条记录一条记录地匹配,例如可以使用分区技术。
Redis
数据类型
LIST
1 | > rpush list-key item |
SET
1 | > sadd set-key item |
HASH
1 | > hset hash-key sub-key1 value1 |
ZSET
1 | > zadd zset-key 728 member1 |
使用场景
计数器
可以对 String 进行自增自减运算,从而实现计数器功能。
Redis 这种内存型数据库的读写性能非常高,很适合存储频繁读写的计数量。
缓存
将热点数据放到内存中,设置内存的最大使用量以及淘汰策略来保证缓存的命中率。
查找表
例如 DNS 记录就很适合使用 Redis 进行存储。
查找表和缓存类似,也是利用了 Redis 快速的查找特性。但是查找表的内容不能失效,而缓存的内容可以失效,因为缓存不作为可靠的数据来源。
消息队列
List 是一个双向链表,可以通过 lpush 和 rpop 写入和读取消息
不过最好使用 Kafka、RabbitMQ 等消息中间件。
会话缓存
可以使用 Redis 来统一存储多台应用服务器的会话信息。
当应用服务器不再存储用户的会话信息,也就不再具有状态,一个用户可以请求任意一个应用服务器,从而更容易实现高可用性以及可伸缩性。
分布式锁实现
在分布式场景下,无法使用单机环境下的锁来对多个节点上的进程进行同步。
可以使用 Redis 自带的 SETNX 命令实现分布式锁,除此之外,还可以使用官方提供的 RedLock 分布式锁实现。
其它
Set 可以实现交集、并集等操作,从而实现共同好友等功能。
ZSet 可以实现有序性操作,从而实现排行榜等功能。
Redis 与 Memcached
两者都是非关系型内存键值数据库,主要有以下不同:
数据类型
Memcached 仅支持字符串类型,而 Redis 支持五种不同的数据类型,可以更灵活地解决问题。
数据持久化
Redis 支持两种持久化策略:RDB 快照和 AOF 日志,而 Memcached 不支持持久化。
分布式
Memcached 不支持分布式,只能通过在客户端使用一致性哈希来实现分布式存储,这种方式在存储和查询时都需要先在客户端计算一次数据所在的节点。
Redis Cluster 实现了分布式的支持。
内存管理机制
- 在 Redis 中,并不是所有数据都一直存储在内存中,可以将一些很久没用的 value 交换到磁盘,而 Memcached 的数据则会一直在内存中。
- Memcached 将内存分割成特定长度的块来存储数据,以完全解决内存碎片的问题。但是这种方式会使得内存的利用率不高,例如块的大小为 128 bytes,只存储 100 bytes 的数据,那么剩下的 28 bytes 就浪费掉了。
键的过期时间
Redis 可以为每个键设置过期时间,当键过期时,会自动删除该键。
对于散列表这种容器,只能为整个键设置过期时间(整个散列表),而不能为键里面的单个元素设置过期时间。
持久化
Redis 是内存型数据库,为了保证数据在断电后不会丢失,需要将内存中的数据持久化到硬盘上。
RDB 持久化
将某个时间点的所有数据都存放到硬盘上。
可以将快照复制到其它服务器从而创建具有相同数据的服务器副本。
如果系统发生故障,将会丢失最后一次创建快照之后的数据。
如果数据量很大,保存快照的时间会很长。
AOF 持久化
将写命令添加到 AOF 文件(Append Only File)的末尾。
使用 AOF 持久化需要设置同步选项,从而确保写命令同步到磁盘文件上的时机。这是因为对文件进行写入并不会马上将内容同步到磁盘上,而是先存储到缓冲区,然后由操作系统决定什么时候同步到磁盘。有以下同步选项:
选项 | 同步频率 |
---|---|
always | 每个写命令都同步 |
everysec | 每秒同步一次 |
no | 让操作系统来决定何时同步 |
- always 选项会严重减低服务器的性能;
- everysec 选项比较合适,可以保证系统崩溃时只会丢失一秒左右的数据,并且 Redis 每秒执行一次同步对服务器性能几乎没有任何影响;
- no 选项并不能给服务器性能带来多大的提升,而且也会增加系统崩溃时数据丢失的数量。
随着服务器写请求的增多,AOF 文件会越来越大。Redis 提供了一种将 AOF 重写的特性,能够去除 AOF 文件中的冗余写命令。
事务
一个事务包含了多个命令,服务器在执行事务期间,不会改去执行其它客户端的命令请求。
事务中的多个命令被一次性发送给服务器,而不是一条一条发送,这种方式被称为流水线,它可以减少客户端与服务器之间的网络通信次数从而提升性能。
Redis 最简单的事务实现方式是使用 MULTI 和 EXEC 命令将事务操作包围起来。